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1 Two applications of group theory

In this extended abstract, we give the definition of a group and 3 theorems in group theory. We also have
2 important examples of groups, namely the permutation group and symmetry group, together with their
applications.

1.1 What is a Group?

Given a set G and an operation ∗ on G, we say (G, ∗) is a group if the following 4 requirements are satisfied:

Closure: For all a, b ∈ G, a ∗ b ∈ G.

Associativity: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

Identity: There exists e ∈ G, such that for all a ∈ G, e ∗ a = a ∗ e = a, and e is called an identity element.

Inverse: For all a ∈ G, there is an element b ∈ G, such that b ∗ a = a ∗ b = e. Here b is called an inverse of a.

1.2 Quick examples and non-examples

In fact lots of structures we are familiar with form a group. In particular, the following two:

1. The integers Z under operation “+” form a group (Z,+).

2. The set of invertible n by n matrices M under operation “×”, i.e. matrix multiplication, form a group.

Here are two cases that they don’t form a group:

1. The integers Z under operation “×” does not form a group. Because 1
2 /∈ Z, so 2 doesn’t have an inverse.

2. The set of all n by n matrices M under operation “×” does not form a group. Because a non-invertible
matrice doesn’t have an inverse.

1.3 Two theorems

Merely from the definition, there are already some non-trivial properties of groups that we can prove. For
example, given a group (G, ∗), by definition we know there must exist an identity element e. However, no where
in the definition indicate the uniqueness of the identity! Now lets prove the following 2 properties.

Theorem 1. The identity element in (G, ∗) is unique.

Theorem 2. Let (G, ∗) be a group. Then every element in G has a unique inverse.

1.4 Two important type of groups

1. Permutation group
Given X = {1, 2, ..., n} a finite set of n elements. Let G be the set of all bijective functions from X to X,
with the operation defined to be function composition ◦, then (G, ◦) forms a group, called the permutation
group of order n, and denoted by Sn.

2. Symmetry group
Suppose S is an object, say an image. Let G be the set of all transformations under which the object is
invariant. Then G with operation defined to be transformation composition ◦, forms a group, called the
symmetry group of this object.
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1.5 A theorem related to Sn

Theorem 3 (Cayley’s theorem). Every finite group G is isomorphic to a subgroup of Sn, for some n ∈ Z.

Note! we didn’t formally define the notion “isomorphism”, but loosely speaking, if two groups are “isomor-
phic”, then they are essentially the same group with different names. Just like you wearing two different clothes,
although you look slightly different, but you are still you.

Cayley’s theorem is cool, because it tells us that any group, no matter how strange, is contained in a symmetric
group Sn. On the other hand, you may start thinking: then group theory is easy, we just need to know Sn and
then we know everything about any group! Theoretically it is true, but a symmetric group Sn contains n! many
elements, i.e. the size of Sn grows factorially, which is even faster than exponential functions. This is too big
to analyse.

Of course, people developed lots of clever theorems to study groups, see [1], [2] and link [3].

1.6 Cool applications and potential study projects

While the formal study of group theory may sounds very abstract when first time encounter it, it has wild
applications.

1. A wallpaper usually contain a repetitive pattern. A wallpaper group, or a plane symmetry group, is a
group of isometries (translation, rotation, reflection, and glide reflection) that acts on a two-dimensional
repeating pattern, i.e. a wallpaper. You may think of there are infinitely many types of wallpapers (with
repetitive patterns), however, the Russian mathematician Evgraf Fedorov proved that there were only 17
possible patterns, i.e. there are 17 different wallpaper groups, and no more! (see figure below [2]) Those
beautiful works of wallpaper art illustrate very nicely group-theoretic aspects of the symmetry groups.
Moreover, studying the symmetry groups helps to understand the geometric restrictions those artists have
to discover in order to create their patterns.

2. Another bit of math you may remember from school is the quadratic formula, which provides analytic
solutions of the quadratic equations. It took people a lot of effort to find the analytic solutions for the
cubic and quartic equations (degree 3 and 4 polynomials). After that, the progress stopped at solving
the quintic equations (degree 5 polynomials). It turns out that it is not because we are too stupid to find
the analytic solutions, it is because there aren’t any, which is proved in Galois theory. Specifically, Galois
theory says a polynomial is solvable if and only if its related symmetric group Sn is solvable. And it turns
out quintic (degree 5) polynomials relate to A5, the symmetric group of order 5, which is not a solvable
group.
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