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LP-Improving Measures

The following is part of a report done for a reading course with Dr. Raymond Grinnell
which was completely based on [1]. LP-improving measures is a specific and important area
within abstract harmonic analysis, a particular kind of analysis in mathematics. To introduce
this area some preliminaries are needed. Let G be an infinite compact abelian group. This
means a few things: G is a group with an operation - which is commutative, it has infinitely
many elements, and is topologically compact. For example, G could be the circle group
T = {z € C: |z| = 1} where |z| is the complex modulus. Although this is a very important
example, here G will always be arbitrary.

The next thing needed is a Haar measure A : B(G) — [0,00] on G where B (G) is the
Borel og-algebra of G. X is defined to be a Haar measure by satisfying the following: (1)
A is a positive measure, (2) A is regular, (3) for any nonempty open set U, A\ (U) > 0, (4)
there exists a nonempty open set U such that A (U) < oo, (5) for any compact subset K,
A(K) < 0o, and (6) A is left-invariant, i.e. Vb € G, VA € B(G), A (bA) = A (A). Moreover A
must be normalized, i.e. A (G) = 1.

This allows the construction of the set L? (G) for a given 1 < p < oco. For p < o0, L? (G)
is the collection of functions f : G — C satisfying

1/p
11, = ( / |f\PdA) < oo

In fact LP (G) is a normed vector space with the above norm. A very useful fact is that
because G is assumed to be compact, it follows that for 1 < p < ¢ < 00, L9(G) C L? (G).
And from these functions an essential operation can be defined as follows. Denote by M (G)
the collection of all complex regular measures on G, so that M (G) includes A. Then for
p e M(G) and f € LP(G), define the convolution of  and f to be the function

M*f:G—)(C,xH/Gf(s_lx)du(s)
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It is a fact that f € LP (G) implies p * f € LP (G). Moreover, if 1 < p < ¢ < oo and
P 1P (G) = {uxf: [ € 7 (G)} C L1(G)

then p is said to be LP-improving. This is interesting because as noted earlier p < ¢ implies
L1 (G) € LP (G), so u “transforms” L? (G) to “reverse” the containment. Many such measures
exist, including A itself!

It is important to notice that in defining an LP-improving measure a particular p is needed.
However the following theorem shows that the p itself is not special provided at least one is
shown to exist.

Theorem Suppose p € M (G) is LP-improving for some 1 < p < co. Then for any 1 < r <
00, p is also L"-improving.

Proof. Since p is LP-improving, therefore there is some p < ¢ < oo such that p* LP (G) C
L7 (G). It turns out that this is equivalent to the linear transformation

T,:LP(G) = LU(G), frpuxf

being bounded. Moreover it is a fact that T}, as a transformation L (G) — L™ (G) (with
the same mapping) is also bounded. A theorem by the name of the Riesz-Thorin (Convexity)
theorem then states that V8 € (0, 1), it is also true that 7}, : L?* (G) — L% (G) is bounded
where py = p/0 and gy = ¢/f. Choosing § = p/r results in ps = r. Then since p < ¢
implies » = pg < gy, the equivalence noted at the beginning of this proof then shows that
p is L™-improving, provided 8 = p/r < 1. However the latter only holds if r € (p,00). To

prove the remainder of the theorem, namely for r € (1,p), a similar argument is done using
the boundedness of 7, : L' (G) — L' (G). W

Consequently more generally a measure u € M (G) is Lebesque-improving if it is LP-improving
for some p. From here more elementary properties of LP-improving measures can be proved,
such as that linear combinations and convolution products of Lebesgue-improving measures
results in Lebesgue-improving measures, and additional examples and non-examples. More-
over there are additionally sophisticated ways of characterizing LP-improving measures such
as in terms of “size” (e.g. in terms of the Fourier transform) and another area of study in
abstract harmonic analysis called lambda-p (A (p)) sets.

References

[1] R. J. Grinnell, Lorentz-Improving Measures on Compact Abelian Groups. Ph.D. disserta-
tion, Queen’s University, 1991.



