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Introduction 
 

Menelaus was a Greek mathematician born around 70 AD in Alexandria. He explored geometry in depth, and his 

most notable work titled Sphaerica detailed spherical triangles and their applications to astronomy [3]. Perhaps one 

of his most well known contributions to mathematics, Menelaus’ theorem states that points lying on three sides of a 

triangle are collinear if and only if the ratio of the products of the non-adjacent sides is 1. As evident, Menelaus’ 

theorem is closely related to Ceva’s theorem. While the former demonstrates when certain points on a triangle are 

collinear, the latter explores when certain line segments of a triangle are concurrent. This property of similarity 

between the theorems is called duality [3]. Moreover, for both theorems, the converses hold true as well.  

 

Menelaus’ Theorem in Hyperbolic Geometry 
 

Given the different kinds of geometries we encounter in mathematics, there are several versions of 

Menelaus’ theorems that are used. When we work with this theorem in Euclidean geometry, we use signed ratios. 

Although we can define similar ratios in hyperbolic geometry, they won’t be very useful quantities. Hence, we use 

another ratio, namely the hyperbolic ratio: 
 

Definition 1 (Hyperbolic Ratio). Let A, B and X be three distinct points on a hyperbolic line. Their hyperbolic ratio 

is  
 

h(A,X,B)=  
     

𝑠𝑖𝑛 ℎ 𝑑 𝐴,𝑋  

𝑠𝑖𝑛 ℎ 𝑑 𝑋,𝐵  
 

−
𝑠𝑖𝑛 ℎ 𝑑 𝐴,𝑋  

𝑠𝑖𝑛 ℎ 𝑑 𝑋,𝐵  

  

 

where 𝑠𝑖𝑛 ℎ 𝑑 𝐴, 𝑋   is the hyperbolic sine function. 
 

As shown in the above, it is important to note that the value of h(A,X,B) determines the position of point X 
relative to the positions of points A and B. We now define Menelaus’ theorem in hyperbolic geometry using the 

hyperbolic ratio: 
 

Theorem 1 (Menelaus in Hyperbolic Geometry). Let ABC be a hyperbolic triangle. Let L be a hyperbolic line that 

does not pass through any vertex of Δ ABC but meets BC at Q, AC at R, and AB at P. Then, the absolute value of the 

product of their hyperbolic ratios is 1. That is, 
 

 ℎ 𝐴, 𝑃, 𝐵  ℎ 𝐵, 𝑄, 𝐶  ℎ(𝐶, 𝑅, 𝐴) = 1 

 

 
Figure 1. Menelaus’ theorem in hyperbolic geometry [4]. 

 

Proof. Since we want to show that the absolute value of the product of the hyperbolic ratios is 1, we can label the 

vertices of Δ ABC in any order and it won’t impact our result. We apply the hyperbolic sine rule to Δ APR and get 

the following: 
 

L 

, if X is between A and B 

, for all other cases 



 
𝑠𝑖𝑛 ℎ (𝑑 𝐴,𝑅 )

𝑠𝑖𝑛 (<𝐴𝑃𝑅)
 = 

𝑠𝑖𝑛 ℎ (𝑑 𝐴,𝑃 )

𝑠𝑖𝑛(<𝐴𝑅𝑃)
    

 

Likewise, from Δ BPQ and Δ CRQ, we get the following: 
 

     
𝑠𝑖𝑛 ℎ (𝑑 𝐵,𝑄 )

𝑠𝑖𝑛(<𝐵𝑃𝑄)
 = 

𝑠𝑖𝑛 ℎ (𝑑 𝐵,𝑃 )

𝑠𝑖𝑛(<𝐵𝑄𝑃)
    

 

     
𝑠𝑖𝑛 ℎ (𝑑 𝐶,𝑅 )

𝑠𝑖𝑛(<𝐶𝑄𝑅)
 = 

𝑠𝑖𝑛 ℎ (𝑑 𝐶,𝑄 )

𝑠𝑖𝑛(<𝐶𝑅𝑄)
    

 

From figure 1, we see the following relations: 
 

<APR = <BPQ, <BQP = <CQR, <ARP = π – <CRQ, and hence sin(<APR) = sin(<BPQ), sin(<BQP) = 

sin(<CQR), and sin(<ARP) = sin(<CRQ).  
 

The above equations lead us to the required product, which is: 
 

 h A, P, B  h B, Q, C  h(C, R, A) = 1 
         

Note that the above proof is valid for one case only. There are other cases possible, all of which can be proven using 

a similar method.           Q. E. D. 

 

Hilbert Geometry 
 

 Serving as a connection between modern and historical geometries, Menelaus’ theorem has certain 

applications in higher-level mathematics. More specifically, the hyperbolic version of this theorem has been used to 

explore new approaches in geometry. One such application is Hilbert geometry, which was introduced by David 

Hilbert in 1899 and includes natural generalizations of hyperbolic geometry [2]. 
 

Let’s consider two points A and B in ℝn and denote the line passing through them by AB as well as the 

open segment with end points A and B by AB     [2]. We now define the cross ratio in Hilbert geometry: 
 

Definition 2 (Cross Ratio). Let A and B be distinct points in ℝ 
n , with points X,Y ∈ AB such that they can be 

expressed using the linear combinations X = λ1A + μ1B and Y = λ2A + μ2B, where λ1, λ2, μ1, μ2 are real numbers. 

Then, the cross ratio of A, B, X and Y is 
 

(A, B; X, Y) =  
𝜇1𝜆2

𝜆1𝜇2
 , where λ1μ2 ≠ 0 

 

Then, we define Hilbert geometry: 
 

Definition 3 (Hilbert Geometry). Let ℋ be an open, strictly convex set in ℝ 
n, n ≥ 2, with boundary ∂ℋ. The Hilbert 

metric on ℋ is the function dℋ : ℋ  × ℋ → ℝ such that  
 

dℋ (X, Y) =  

0,  𝑖𝑓 𝑋 = 𝑌
1

2
 ln  𝐴, 𝐵;  𝑋, 𝑌  , 𝑖𝑓 𝑋 ≠ 𝑌 𝑎𝑛𝑑 𝐴𝐵    = ℋ  𝑋𝑌  

 

The pair (ℋ, dℋ) is called the Hilbert geometry in ℋ. 
 

 It is shown that a Hilbert geometry in which Menelaus’ Theorem holds true is hyperbolic. The reason for 

this is that such a geometry turns out to be a solid with all sections that are ellipses, i.e. an ellipsoid. However, we 

find that ℋ is an ellipsoid if and only if it is hyperbolic [2].  
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